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COMMENT 

Some observations on the nature of solutions for the interaction 
V ( x )  = x2 + Ax2/( 1 + gx') 

Pinaki Roy and Rajkumar Roychoudhury 
Electronics Unit, Indian Statistical Institute, Calcutta 700 035, India 

Received 12 December 1989 

Abstract. We study the nature of exact solutions for the non-polynomial interaction. In 
particular it is shown that all the solutions are supersymmetric. It is also shown that this 
problem admits a dynamical SU(2)  symmetry so that an arbitrarily large part of the 
spectrum, but not the whole spectrum, can be determined exactly. 

In a number of recent papers [l-41 several authors studied exact solutions for the 
non-polynomial interaction. Exact solutions for this potential have also been studied 
[ 5 ]  using supersymmetry. By comparing the solutions obtained in [l-41 with those of 
[ 5 ]  it can be easily seen that the solutions in both cases are the same. The question 
here is why apparently non-supersymmetric methods lead to supersymmetric results. 
Our purpose is to clarify this issue. We shall also analyse the problem from a different 
angle: it will be shown that this problem admits partial algebraisation [6,7] so that 
an arbitrarily large part of the spectrum can always be determined although the spectrum 
cannot be found entirely. 

To show that the methods used in [ 1-41 yield exact eigenvalues and eigenfunctions 
only when they become supersymmetric, we consider the most general of these methods 
[4]. Here one considers eigensolutions (we consider even parity solutions) of the form: 

n 

Y = C aix2'(1 +gx') exp(-x'/2). 

Next we put (1) into the Schrodinger equation 

i = O  

- + ( E - V ) y = O  d2Y 
dx2 

and form a recurrence relation involving the coefficients a i .  The energy eigenvalues 
are determined from these relations. To see the connection with SUSY we note that 
(1) can be written as 

Y = (1 +gx2) exp(-x2/2)f(x) (4) 
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where f ( x )  is given by 
f l  

f ( x )  = 1 a,xzl. 
i =O 

Now we also have 

It is now easy to recognise ( 6 )  as the ground-state wavefunction of a SUSY system with 
superpotential given by 

The potential of the supersymmetric system is given by 

V * ( x )  = W’(x)* W‘(X) .  

Next we note tha t f (x )  is a polynomial of degree n in x2 and thus we can write 

( 9 )  f ( x ) = a f l ( x ’ - a f l ) ( x  2 -a f l - l )  . . . (  x 2 - a 0 )  

so that 

Hence the complete superpotential is given by 

2gx -i- 2x 
W ( x ) = x -  

( 1  + gx2)  i=o (x’- ai) 

The next step is to calculate W*(x)-  W ’ ( x ) ,  i.e. V - ( x )  and identify it with ( 3 ) ;  this 
identification will induce a constant with a relation between A and g of the form, 
- A / g  = F ( g ) .  The form of F ( g )  will depend on the number of terms on the R H S  of 
(10). The number of values each a, can assume will determine the number of solutions 
for the same potential. 

For example in the absence of the term f ’ i x ) / f ( x )  on the RHS of ( 7 )  

F ( g )  = ( 6 g + 4 )  (12 )  

([SI equation ( 3 1 ) ;  odd parity solution) and  if we take only one term for f ’ ( x ) / f ( x )  
(i.e. n = 1 in ( 1 0 ) )  then the even parity solution gives 

F ( g )  = 7g  +6*J2Sg2 - 12 +4. (13 )  

For g = 2 /3 ,  (12 )  and ( 1 3 ) ,  with the sign before the square root are equal and we get 
two solutions, namely 

cpl(x) = x(1  +fx’) e-.”:’ (14 )  
and 

( o l ( x )  = ( 1  +jx’)(l  - $ x 2 )  e-“”’ (15) 
with eigenvalues - 1  and 1 respectively and  A = -16/3 and g = 2 /3 ;  this solution has 
also been obtained by Lakhtakia. For other solution see [ 5 ] .  
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Now the question is why only a finite part of the spectrum can be found. The 
answer lies in the fact that this problem admits a dynamical SU(2) symmetry which 
allows determination of an arbitrary but finite part of the spectrum. To show this we 
note that (4) can be written as 

Y(x)=exp({(x-*)dx)?(x) 1 +gx' (16) 

and (12) can easily be recognised as an imaginary gauge transformation on Y(x) with 
gauge function given by 

2gx 
( 1 + gx2) ' 

A(x) = x - 

Substituting (16) in equation (2) we find 

HG Y(x) = E?(x) 

where HG is the gauge Hamiltonian and is given by 

A V  = V(X) + A'(x) - A'(x). (20) 

It is now necessary to write the gauge Hamiltonian (19) in terms of the generators of 
the SU(2) group, These generators, in the form of differential operators, are given by 

where j denotes the spin of the representation and can assume semi-integer values. 
The dimension of the representation is (2j+ 1 ) .  Corresponding to the generators 
(20)-( 22) the finite-dimensional representation of the group is 

RJ = { 1, 5, t', . . . , t2/}. (24) 

However it is not possible to express HG in terms of the generators; instead we express 
( 1  + gx2)HG in terms of T' and r" and the eigenvalues can be found from the following 
relation [8,9]: 

( 1 + gx')( HG - E )  ? = 0. (25) 
The expression for ( 1  + gx')HG in terms of T', To is 

( 1 + g x 2 ) H G =  2 TaTo+ C,T"+constant. 
o=o.- a = *  

It is clear that the above expression operates on polynomials in [( = gx') of degree 2j. 
Next we choose the basis as follows: 

? ={1,5,  t2, * * * 9 (' '9 ? 2 j + 2 9  F 2 j + 3 ,  * .  *) (27) 
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where izJt2 etc are an arbitrary set of functions orthogonal to 1, 6 , .  . . , t2’ with weight 
function A dx. It is then clear that the energy matrix is split into two parts: the upper 
left block is a ( 2 j +  1) x ( 2 j +  1) matrix while the one in the bottom right-hand corner 
is infinite dimensional. One can now diagonalise the finite ( 2 j C  1) x ( 2 j +  1) to obtain 
the ( 2 j  + 1) energy eigenvalues. The corresponding wavefunctions can be obtained 
from (16) and the fact that y can be written as 

y’(x)=(gx2-a,)(gx2-az) .  . . (gx2-a*j). 

For the details regarding determination of the parameters ai we refer the reader to [6]. 
In conclusion it has been shown that the power series method of solving the 

non-polynomial interaction [ 1-41 is supersymmetric and naturally this method leads 
to SUSY solutions [ 5 ] .  The other result which is totally new is that this problem has, 
apart from SUSY, a dynamical SU(2) symmetry which allows partial algebraisations of 
the problem i.e. a finite part of the spectrum can always be exactly determined. 
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